matematykaszkolna.pl
zad say: Okrąg o promieniu 4 jest wpisany w trójkąt. Punkt styczności podzielił jeden z boków na odcinki o długości 6 i 8. Oblicz długości boków tego trójkąta.
14 gru 22:13
===: zrób rysunek i będzie jaśniejemotka
14 gru 22:18
say: dzieki
14 gru 22:24
===: dodatkowa podpowiedź ... twierdzenie o dwusiecznejemotka
14 gru 22:29
Janek191: rysunek
14 gru 22:45
Eta: rysunek 1/ z twierdzenia o odcinkach stycznych
 28+2x 
2/ P=rp , p=

= 14+x
 2 
P=4(14+x) ⇒ P2=16(14+x)2 3/ ze wzoru Herona P=p(p−a)(p−b)(p−c) ⇒ P=(14+x)*6*8*x ⇒ P2=48(14+x)*x to 16(14+x)2= 48(14+x)*x ⇒ 14+x=3x ⇒ x=7 długości boków trójkąta : a=15, b=13, c=14
14 gru 22:51
Janek191: Zły rysunek emotka
14 gru 22:52
say: dzieki emotka
14 gru 23:18