| 1+x | ||
f(x)= | ||
| 1−x |
| (1+x)'•(1−x) − (1+x) • (1−x)' | 2 | |||
f'(x) = | = | |||
| (1−x2) | (1−x)2 |
| 2 | −4x | |||
f"(x) = | = | |||
| (1−x)2 | ((1−x)2)2 |
Jakby ktoś mógł pomóc w tym zadaniu to byłbym wdzięczny
| 2 | ||
f'(x) = | ||
| (1−x)2 |
| −2*[(1−x)2]' | −2*2(1−x)*(−1) | 4 | ||||
f"(x) = | = | = | ||||
| [(1−x)2]2 | (1−x)4 | (1−x)3 |
| −4*3*[(1−x)2]*(−1) | 12 | |||
f(3)(x) = | = | |||
| (1−x)6 | (1−x)4 |
| 12 | 4 | |||
f(4) = | * | |||
| (1−x)4 | (1−x) |
| 48 | 5 | |||
f(5) = | * | |||
| (1−x)5 | (1−x) |
| 1 | ||
Oblicz czwartą pochodną funkcji f(x)= | . | |
| 1−x2 |
| 1+x | 2−(1−x) | 2 | ||||
f(x)= | = | = | − 1 | |||
| 1−x | 1−x | 1−x |
| 2*1*2*3 | ||
f(x) ' ' ' = | ||
| (1−x)4 |
| 2*n! | ||
f(x)(n) = | ||
| (1−x)n+1 |
| 1 | 1 | 1 | 1 | ||||
= | = | + | |||||
| 1−x2 | (1−x)(1+x) | 2(1−x) | 2(1+x) |