matematykaszkolna.pl
F_max funkcji matek: Jak znaleźć f max w tej funkcji?
 1 
f(x)dx =

(−x−b/λ)dx
 λ 
13 gru 09:57
'Leszek: Popraw wzor funkcji ! ! Chyba tam powinno byc e(−x −b/λ) ? ?
13 gru 12:28
matek: No tak. Nie widać tego?
 1 
f(x)dx =

e−x−b/λ
 λ 
13 gru 15:16
PW: A co to znaczy f(x)dx w definicji funkcji?
13 gru 15:30
matek: No to jest całka, oczywiście (mogłem wcześniej napisać), ale jak się za to zabrać? Przedział to <b, )
13 gru 18:40
kochanus_niepospolitus: czyli że co: ∫ f(x) dx = ∫ .... dx
13 gru 18:42
piotr: możesz podać dokładnie treść zadania?
13 gru 18:54
matek: Jest to rozkład wykładniczy. Funkcja ma na początku postać: f(x)dx = Ae−x−b/λdx, gdzie x∊<b, )
 1 
Po normalizacji A =

 λ 
Teraz potrzebuję f max z tej całki do metody eliminacji/odrzucania.
 1 
Wynik to f(x − b) =

 λ 
Ale skąd to się wzięło?
13 gru 19:10
piotr:
 1 e−b(1+λ)/λ 
b+

e−x−b/λ dx =

 λ λ 
13 gru 19:11
matek: Czyli żeby wyznaczyć f max liczę dystrybuantę?
14 gru 09:11