| |||||||||||
lim | |||||||||||
1−2cosx |
π | ||
x→ | ||
3 |
cos(x−π/3) | 1 | |||
H = limx→π/3 | = | |||
2sinx | √3 |
sint | t | |||
limt→0 | * | = | ||
t | 1−2cos(t+π/3) |
sint | t | |||
= limt→0 | * | = | ||
t | 1−cost+√3sint |
sint | 1 | |||
= limt→0 | * | |||
t | (1−cost)/t+√3sint/t |
sint | 1 | |||
= limt→0 | * | |||
t | (t/2)sin2(t/2)/(t/2)2+√3sint/t |
sinx | ||
teraz korzystając z granicy limx→0 | ||
x |
1 | 1 | |||
granica = 1* | = | |||
0*1+√3 | √3 |