2 | ||
lim (1+ | )3n | |
n2+1 |
2 | 2 | |||
limn→∞((1+ | )−1(1+ | )n2+1)3/n= | ||
n2+1 | n2+1 |
2 | 2 | |||
(1 + | )−1 = 1 − | |||
n2+1 | n2+3 |
2 | 6n | |||
1 > (1 − | ) 3n ≥ 1 − | →1 | ||
n2+3 | n2+3 |
2 | ||
Wniosek. (1 + | )2n →1. | |
n2+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |