sin(x−3) | ||
{ | dla x≠3 | |
√x+6 −3 |
sin(x−3) | 0 | |||
lim x→3− | = | = | ||
√x+6 −3 | 0 |
(sin(x−3)) (√x+6 +3) | ||
lim x→3− | = | |
(√x+6 −3) (√x+6 +3) |
(sin(x−3)) (√x+6 +3) | ||
lim x→3− | = ? | |
x+6−3 |
(sin(x−3)) (√x+6 +3) | ||
lim x→3− | = | |
x+6−9 |
sin(x−3) | ||
= lim x→3− ( | *(√x+6 +3) ) = 1*6 =6 | |
x−3 |
sin(x−3)*√x+6+3 | ||
=limx→3 | =1*(√9+3)=6 | |
x−3 |