Stosując metodę indukcji matematycznej, pokaż, że:
indukcja: 1 | | 1 | | 1 | | 1 | | n | |
| + |
| + |
| +...+ |
| = |
| , n ∊ N |
1*7 | | 7*13 | | 13*19 | | (6n−5)(6n+1) | | 6n+1 | |
Proszę o wytłumaczenie
7 gru 20:57
Adamm: 1 | | A | | B | |
| = |
| + |
| |
(6n−5)(6n+1) | | 6n−5 | | 6n+1 | |
6A+6B=0
A−5B=1
czyli A=1/6, B=−1/6
(1/6)*(1−1/7+1/7−...+1/(6n−5)−1/(6n+1))=
7 gru 21:06
Mila:
1)
n=1
L=p
2) Z. T prawdziwe dla k=n
3)
dla k=n+1
1 | | 1 | | 1 | | 1 | |
| + |
| +....... |
| + |
| ?= |
1*7 | | 7*3 | | (6n−5)*(6n+1) | | (6*(n+1)−5)*(6*(n+1)+1) | |
| n+1 | | n+1 | |
= |
| = |
| |
| 6*(n+1)+1 | | 6n+7 | |
| n | | 1 | | 36n3+36n2−n−1 | |
L= |
| + |
| = |
| |
| 6n+1 | | (6n−1)*(6n+7) | | (6n−1)*(6n−1)*(6n+7) | |
(36n
3+36n
2−n−1):(36n
2−1)=n+1
− (36n
3−n)
−−−−−−−−−−−
36n
2−1
−(36n
2−1)
=================
0
7 gru 22:25