4ln(1+cosx) | 4(ln(1+cosx))' | |||
limx→π/2 | = limx→π/2 | = | ||
cosx | (cosx)' |
−4sinx/(1+cosx) | ||
=limx→π/2 | = 4 | |
−sinx |
sin3x | tg4x | 3x | 3 | |||||
3) = limx→0 | * | * | = | |||||
3x | 4x | 4x | 4 |
2sin2x | 4cos2x | 4 | ||||
2) = limx→0 | = limx→0 | = | ||||
5x | 5 | 5 |
1−cos2x | (1−cos2x)' | |||
limx→0 | = limx→0 | = | ||
5x2 | (5x2)' |
sin2x | 2 | sin2x | 2 | |||||
=limx→0 | = | limx→0 | = | |||||
5x | 5 | 2x | 5 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |