1 | ||
lnx = t ; | dx = dt | |
x |
1 | −ln(x) | 1 | |||
∫ | √1−ln2x dx=ln(x)√1−ln2(x)−∫ln(x) | dx | |||
x | √1−ln2(x) | x |
1 | 1 | −ln2(x) | |||
∫ | √1−ln2x dx=ln(x)√1−ln2(x)−∫ | dx | |||
x | x | √1−ln2(x) |
1 | 1 | 1−ln2(x)−1 | |||
∫ | √1−ln2x dx=ln(x)√1−ln2(x)−∫ | dx | |||
x | x | √1−ln2(x) |
1 | 1 | 1 | 1 | ||||
∫ | √1−ln2x dx=ln(x)√1−ln2(x)−∫ | √1−ln2(x)dx+∫ | dx | ||||
x | x | x | √1−ln2(x) |
1 | 1 | 1 | |||
2∫ | √1−ln2x dx=ln(x)√1−ln2(x)+∫ | dx | |||
x | x | √1−ln2(x) |
dx | |
=dt | |
x |
1 | 1 | |||
∫ | √1−ln2(x) dx= | (ln(x)√1−ln2(x)+arcsin(ln(x)))+C | ||
x | 2 |