| 40n | ||
an= | ||
| 35*n! |
| 5n+(−3) | ||
an= | ||
| 2n+14 |
| 1+2+...+n | ||
a)an= | ||
| √13n4+7 |
| 1+(1+(−42))+(1+2(−42)+...+(1+(n−1)−42) | ||
b)an= | +3n | |
| 7n+(−4) |
| 1 | ||
b) lim | ||
| √12n2+8n−1−√12n2−8n−9 |
| 1 | 1 | |||
a) lim( | +U{1}{√2+14n2+...+ | ) | ||
| √1+14n2 | √n+14n2 |
| 1 | ||
wyznacz wykładniki potęgi w, wiedząc że lim ( 1+ | )12n=ew | |
| 6n+9 |
| sin6x | ||
a) lim x−>0 | ||
| 10x |
| sin210x | ||
b) lim x−>0 | ||
| 9x |
| sin2x | ||
c) lim x−>0 | ||
| sin3x |
| tg4x | ||
d) lim x−>0 | ||
| sin4x |
| 5 | ||
a) lim x−>∞ (1+ | )−4x | |
| 12x |
| 3x | ||
b) lim x−>∞ ( | )8x | |
| 1+3x |
| x+6 | ||
c) lim x−>∞ ( | )1x−1 | |
| x+3 |
| −3 | ||
a) lim x−>10+ | ||
| 10−x |
| x2−1x−2 | ||
b) lim x−>5− | ||
| x2−3x−10 |