40n | ||
an= | ||
35*n! |
5n+(−3) | ||
an= | ||
2n+14 |
1+2+...+n | ||
a)an= | ||
√13n4+7 |
1+(1+(−42))+(1+2(−42)+...+(1+(n−1)−42) | ||
b)an= | +3n | |
7n+(−4) |
1 | ||
b) lim | ||
√12n2+8n−1−√12n2−8n−9 |
1 | 1 | |||
a) lim( | +U{1}{√2+14n2+...+ | ) | ||
√1+14n2 | √n+14n2 |
1 | ||
wyznacz wykładniki potęgi w, wiedząc że lim ( 1+ | )12n=ew | |
6n+9 |
sin6x | ||
a) lim x−>0 | ||
10x |
sin210x | ||
b) lim x−>0 | ||
9x |
sin2x | ||
c) lim x−>0 | ||
sin3x |
tg4x | ||
d) lim x−>0 | ||
sin4x |
5 | ||
a) lim x−>∞ (1+ | )−4x | |
12x |
3x | ||
b) lim x−>∞ ( | )8x | |
1+3x |
x+6 | ||
c) lim x−>∞ ( | )1x−1 | |
x+3 |
−3 | ||
a) lim x−>10+ | ||
10−x |
x2−1x−2 | ||
b) lim x−>5− | ||
x2−3x−10 |