log320 = m log315= n
m= log34*5= log322*5= 2log32+log35
podobnie:
n= log315= log33*5= log33+log35= 1 +log35
więc log35= n −1
| m −n +1 | ||
to: m = 2log32+ n−1 => log32 = | ||
| 2 |
| logcb | ||
logab= | ||
| logca |
| log3360 | log39*8*5 | log332*23*5 | ||||
log2360= | = | = | =
| |||
| log32 | log32 | log32 |
| 2log33+3log32+log35 | ||
= | ||
| log32 |
| m−n+1 | 4+3m−3n+3+2n−2 | 3m−n+5 | ||||
Licznik: L= 2+3( | )+n−1}= | = | ||||
| 2 | 2 | 2 |
| m−n+1 | ||
mianownik: M= | ||
| 2 |
| L | 3m−n+5 | 2 | 3m−n+5 | |||||
więc: | = | * | = | |||||
| M | 2 | m−n+1 | m−n+1 |
| 3m−n+5 | ||
odp: log2360 = | ||
| m−n+1 |