cos2x − sin2x | ||
limx → π/2 | ||
|2x − π| |
1 − 2 sin2x | ||
limx → π/2 | ||
|2x − π| |
cos 2x | ||
limx → π/2 | ⇒ (x = π/2 − u; u → 0) | |
|2x − π| |
cos 2(π/2 − u) | ||
limu → 0 | ||
|2(π/2 − u) − π| |
sin 2u) | ||
limu → 0 | ||
|π − 2u − π| |
sin 2u) | ||
limu → 0 | ||
|−2u| |
sin 2u) | sin 2u) | |||
− limu → 0− | = limu → 0− | = 1 | ||
−2u | 2u |
sin 2u) | sin 2u) | |||
limu → 0+ | = − limu → 0− | = −1 | ||
−2u | 2u |
cos(2x) | π | |||
f(x)= | dla x> | |||
2x−π | 2 |
cos(2x) | π | |||
f(x)= | dla x< | |||
−2x+π | 2 |
cos(2x) | −1 | |||
lim x→π2+ | =[ | ]=−∞ | ||
2x−π | 0+ |
cos(2x) | −1 | |||
lim x→π2− | =[ | ]=−∞ | ||
−2x+π | 0+ |