| cos2x − sin2x | ||
limx → π/2 | ||
| |2x − π| |
| 1 − 2 sin2x | ||
limx → π/2 | ||
| |2x − π| |
| cos 2x | ||
limx → π/2 | ⇒ (x = π/2 − u; u → 0) | |
| |2x − π| |
| cos 2(π/2 − u) | ||
limu → 0 | ||
| |2(π/2 − u) − π| |
| sin 2u) | ||
limu → 0 | ||
| |π − 2u − π| |
| sin 2u) | ||
limu → 0 | ||
| |−2u| |
| sin 2u) | sin 2u) | |||
− limu → 0− | = limu → 0− | = 1 | ||
| −2u | 2u |
| sin 2u) | sin 2u) | |||
limu → 0+ | = − limu → 0− | = −1 | ||
| −2u | 2u |
cos2x−sin2x=cos(2x)
| cos(2x) | π | |||
f(x)= | dla x> | |||
| 2x−π | 2 |
| cos(2x) | π | |||
f(x)= | dla x< | |||
| −2x+π | 2 |
| cos(2x) | −1 | |||
lim x→π2+ | =[ | ]=−∞ | ||
| 2x−π | 0+ |
| cos(2x) | −1 | |||
lim x→π2− | =[ | ]=−∞ | ||
| −2x+π | 0+ |