1 | ||
f(x)=e | ||
x2(x+1) |
1 | ||
f(x)'=e | *[(x2(x+1))−1)]' | |
x2(x+1) |
1 | ||
=[e | ]*[x−2(x+1)−1]' | |
x2(x+1) |
1 | 1 | |||
=[e | ]*−x−3*(x+1)−1− | |||
x2(x+1) | x2(x+1)2 |
1 | 2 | 1 | ||||
=−[e | ]* | + | ||||
x2(x+1) | x3(x+1) | x2(x+1)2 |
1 | 2 | 2x+1 | ||||
=−[e | ]* | + | ||||
x2(x+1) | x3(x+1) | x3(x+1) |
1 | 2 | 3x+2 | ||||
−[e | ]* | + | ||||
x2(x+1) | x3(x+1) | x3(x+1)2 |
−1 | ||
=e(x3+x2)−1* | *(x3+x2)'= | |
(x3+x2)2 |
−1 | ||
=e(x3+x2)−1* | *(3x2+2x)= | |
x4(x+1)2 |
3x+2 | ||
=−e(x3+x2)−1* | ||
x3(x+1)2 |