√x2+1−√x+1 | |
przy lim dążącym do 0 | |
1−√x+1 |
√x2+1−√x+1 | 1+√x+1 | ||
* | = | ||
1−√x+1 | 1+√x+1 |
(√x2+1−√x+1)*(1+√x+1) | ||
= | = | |
1−x−1 |
(√x2+1−√x+1)*(1+√x+1) | (√x2+1+√x+1) | |||
= | * | = | ||
−x | (√x2+1+√x+1) |
(x2+1−x−1)*(1+√x+1) | ||
= | ||
(−x)*(√x2+1+√x+1) |
(x−1)*(1+√x+1) | ||
lim x→0 | =1 | |
(−1)*(√x1+1+√x+1) |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |