u' | 2 | ||
= | |||
u−1−√u−u2 | t |
du | 2dt | ||
= | |||
u−1−√u−u2 | t |
t2 | ||
u= | ||
1+t2 |
−1 | ||
(u−1)= | ||
1+t2 |
−t | ||
(u−1)t= | ||
1+t2 |
2t(1+t2)−2t3 | ||
du= | dt | |
(1+t2)2 |
2t | ||
du= | dt | |
(1+t2)2 |
−1+t | ||
u−1−√u−u2= | ||
1+t2 |
t2+1 | 2t | ||
∫ | dt | ||
t−1 | (1+t2)2 |
2t | ||
∫ | dt | |
(t−1)(1+t2) |
(t2+1)−(t−1)2 | ||
∫ | dt | |
(t−1)(1+t2) |
dt | t−1 | |||
∫ | −∫ | dt | ||
t−1 | t2+1 |
dt | 1 | 2t | 1 | |||||
∫ | − | ∫ | dt+∫ | dt | ||||
t−1 | 2 | t2+1 | 1+t2 |
1 | ||
ln|t−1|− | ln|t2+1|+arctan(t)+C1 | |
2 |
1 | (t−1)2 | |||
= | ln| | |+arctan(t)+C1 | ||
2 | t2+1 |
1 | √u−u2 | |||
= | ln{|2√u−u2+1|}+arctan( | )+C1 | ||
2 | u−1 |
1 | √u−u2 | ||
ln{|2√u−u2+1|}+arctan( | )+C1=2ln{|t|} | ||
2 | u−1 |
1 | √u−u2 | ||
ln{|2√u−u2+1|}+arctan( | )−2ln|t|=C1 | ||
2 | u−1 |
1 | 2 | t | √ut2−u2t2 | ||||
ln{| | √ut2−u2t2+ | |}+arctan( | )−2ln|t|=C1 | ||||
2 | t | t | ut−t |
1 | √yt−y2 | 5 | |||
ln|2√yt−y2|+arctan( | )− | ln|t|=C1 | |||
2 | y−t | 2 |
√yt−y2 | ||
ln|2√yt−y2|+2arctan( | )−5ln|t|=C | |
y−t |
√yt−y2 | ||
ln|2√yt−y2+t|+2arctan( | )−5ln|t|=C | |
y−t |