Równanie z dwoma pierwiastkami
ola: Rozwiąż równanie(dwa pierwiastki):
√x−4+4*√x−8 − √x−7+2*√x−8=1
Pierwsze co zrobiłam to to podniosłam wszystko do kwadratu, ale wychodzi b. długie wyrażenie i
poza tym dalej jest tam pierwiastek.
(to x−8 jest pod pierwiastkiem, który jest pod większym pierwiastkiem−dla jasności)
8 lis 18:00
Mila:
I)
x−8≥0
√x−8=t≥0,
x−8=t2, x=t2+8
√t2+8−4+4t−√t2+8−7+2t=1
√t2+4t+4−√t2+2t+1=1
|t+2|−|t+1|=1
t≥0 z zał.
t+2−t−1=1
L=P
Równość prawdziwa dla x≥8
II) sposób
Zauważyć, że:
(√x−8+2)2=x−8+4√x−8+4=x−4+4√x−8 wyrażenie pod pierwszym pierwiastkiem
(√x−8+1)2=x−8+2√x−8+1=x−7+2√x−8−wyrażenie pod drugim pierwiastkiem
L=√(√x−8+2)2−√(√x−8+1)2=√x−8+2−√x−8−1=1=P
8 lis 18:36
ola11: Dzięki wielkie
8 lis 18:38