(n−√n2−1)*(n+√n2−1) | ||
n*(n−√n2−1)=n* | = | |
(n+√n2−1) |
n*(n2−n2+1) | n | |||
= | = | |||
(n+√n2−1) | (n+√n2−1) |
n | ||
limn→∞ | = | |
(n+√n2−1) |
n | 1 | |||
=limn→∞ | = | |||
(n*(1+√1−1/n2) | 2 |
1 | √2 | |||
limn→∞un= | = | |||
√2 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |