2 | 1 | |||
sin (arcsin | + arccos | ) = | ||
3 | 3 |
2 | √5 | |||
arcsin | = arccos | (patrz jedynka trygonometryczna) | ||
3 | 3 |
1 | √8 | |||
arccos | = arcsin | (patrz jedynka trygonometryczna) | ||
3 | 3 |
2 | π | π | ||||
arcsin | =α i α∊<− | , | ⇔ | |||
3 | 2 | 2 |
2 | 4 | 5 | √5 | |||||
sinα= | ⇔cosα>0 i cos2α=1− | = | ⇔ cosα= | |||||
3 | 9 | 9 | 3 |
1 | ||
arccos | =β i β∊<0,π>⇔ | |
3 |
1 | 1 | 2√2 | ||||
cosβ= | i sin2β=1− | ⇔ sinβ= | ||||
3 | 9 | 3 |
2 | 1 | 2√2 | √5 | 2 | 2√10 | |||||||
sin(α+β)=sinα*cosβ+sinβ*cosα= | * | + | * | = | + | |||||||
3 | 3 | 3 | 3 | 9 | 9 |