Trapez równoramienny (kąt między przekątną a ramieniem będzie prosty bo to kąt oparty na
średnicy okręgu)
x2+(2√7)2 = 62
x2 + 28 = 36
x2 = 8
x = 2√2
| 2√2 | ||
cosα = | ||
| 6 |
| √2 | ||
cosα = | ||
| 3 |
| √2 | ||
cos(180o−α) = −cosα = − | ||
| 3 |
| √2 | ||
28 = 8+y2−4√2*(− | )*y | |
| 3 |
| 8 | ||
28 = 8+y2+ | y | |
| 3 |
| 8 | ||
y2+ | y−20 = 0 | |
| 3 |
| −8−28 | ||
y1 = | < 0 nie spełnia warunków zadania | |
| 6 |
| −8+28 | 20 | 10 | ||||
y2 = | = | = | ||||
| 6 | 6 | 3 |
| 10 | 1 | |||
Ob = 6 + 4√2 + | = 9 | +4√2 | ||
| 3 | 3 |
twierdzenie cosinusów, to taki podrasowany Pitagoras
c2=a2+b2−2ab*cosα
gdy α=900 (szczególny przypadek)
to
c2=a2+b2−2ab*cos900
c2=a2+b2−2ab*0
c2=a2+b2
Podoba mi się to stwierdzenie, dzięki.
| 6+b | 6−b | |||
a=|AB|=2R=6 i |AE|= | , |EB|= | |||
| 2 | 2 |
| d*c | 2√14 | |||
h= | = | |||
| a | 3 |
| 56 | (6+b)( 6−b) | 224 | 100 | 10 | ||||||
to | = | ⇒ 36−b2= | ⇒ b2= | ⇒ b= | ||||||
| 9 | 4 | 9 | 9 | 3 |
| 1 | ||
Obwód trapezu L=2c+a+b= 4√2+9 | ||
| 3 |
II sposób
1)
c2=62−(2√7)2=8
c=2√2
2)
| 1 | ||
PΔABC= | *c*p | |
| 2 |
| 1 | ||
2√14= | *6*h | |
| 2 |
| 2√14 | ||
h= | ||
| 3 |
| 14 | ||
|AE|= | ||
| 3 |
| a+b | ||
|AE|= | ||
| 2 |
| 28 | ||
a+b= | ||
| 3 |
| 28 | ||
Obw= | +4√2 | |
| 3 |