| 3x−2√x+1 | ||
f(x)= | ||
| x |
ktoś wytłumaczy ?
| 3x−2√x+1 | ||
f(x) = | ||
| x |
lub:
f(x) = 3 − 2x−1/2 + x−1
f'(x) = ... suma/różnica pochodnych funkcji xα
| 1 | ||
f'(x)=−2*(− | *x−3/2+(−1)*x−2= | |
| 2 |
| 1 | 1 | 1 | 1 | |||||
= | − | = | − | = | ||||
| √x3 | x2 | x√x | x2 |
| √x | 1 | √x−1 | ||||
= | − | = | ||||
| x2 | x2 | x2 |
| 2 | 1 | |||
f(x)= 3− | + | |||
| √x | x |
| 2 | 1 | 1 | √x | 1 | √x−1 | |||||||
f'(x)= | * | − | = | − | = | |||||||
| x | 2√x | x2 | x2 | x2 | x2 |
| 3x−2√x+1 | ||
f(x)= | ||
| x |
| (3x−2√x+1)'*x−(x)'*(3x−2√x+1) | (3x−√x)−(3x−2√x+1) | |||
f'(x)= | = | = | ||
| x2 | x2 |
| √x−1 | ||
= | ||
| x2 |