𝑎) 𝑧2 − 𝑧 + 3 = 0,
b) 𝑖𝑧2 − 𝑧 + 2𝑖 = 0,
c) 𝑧4 + (1 − 𝑖) 𝑧2 − 𝑖 = 0,
d) 𝑧2 = 5 + 8𝑖,
e) z2+(2+i)z−1+7i=0
| 1 − √11 i | ||
z1 = | ||
| 2 |
| 1 + √11 i | ||
z2 = | ||
| 2 |
| 1 − 3 | − 2 | −1 | i | − i | ||||||
z1 = | = | = | * | = | = i | |||||
| 2 i | 2i | i | i | −1 |
| 1 + 3 | 2 | i | 2 i | |||||
z2 = | = | * | = | = − 2 i | ||||
| 2 i | i | i | −1 |
| i − 1 − 1 − i | i − 1 + 1 + i | |||
t = | = − 1 lub t = | = i | ||
| 2 | 2 |
| π | π | |||
2) z2 = i = 0 + i = cos | + i sin | |||
| 2 | 2 |
| α + 2k π | α + 2k π | |||
zk = n√I z I*(cos | + i sin | ) gdzie k = 0,1,2, ..., n −1 | ||
| n | n |
| 0,5π | 0,5π | π | π | |||||
z0 = 1*( cos | + i sin | ) = cos | + i sin | = | ||||
| 2 | 2 | 4 | 4 |
| √2 | √2 | |||
= | + | i | ||
| 2 | 2 |
| 0,5π + 2π | 0,5π + 2π | π | π | |||||
z1 = 1*(cos | + i sin | ) = cos( | +π) + i sin ( | +π) = | ||||
| 2 | 2 | 4 | 4 |
| π | π | √2 | √2 | |||||
= − cos | + i ( − sin | ) = − | − | i | ||||
| 4 | 4 | 2 | 2 |
| √2 | √2 | |||
Odp. z = − i lub z = i lub z = | + | i | ||
| 2 | 2 |
| √2 | √2 | |||
lub z = − | − | i | ||
| 2 | 2 |
| 4 | ||
2xy=8⇔xy=4, y= | ||
| x |
| 16 | ||
x2− | =5 | |
| x2 |
| 5−√89 | 5+√89 | |||
x2= | <0, lub x2= | |||
| 2 | 2 |
| √5+√89 | √5+√89 | |||
x= | lub x=− | |||
| √2 | √2 |