3n+2n | ||
lim n −>∞ n√ | ||
5n+4n |
3n | ||
ograniczony z dołu to n√ | ||
5n+4n |
3n +3n | ||
ograniczony z gory to n√ | ? | |
5n+4n |
2n+(−1)n | ||
i jak zrobic to lim n−>inf | ||
3n+2 |
n√3n+2n | ||
lim n→∞ | ||
n√5n+4n |
3 | ||
= | ||
5 |
2n+(−1)n | |
no to chyba prosto | |
3n+2 |
2n − 1 | 2n+(−1)n | 2n + 1 | |||
≤ | ≤ | ||||
3n+2 | 3n+2 | 3n+2 |
2 | ||
granica to oczywiscie | ||
3 |
3n | 3n | 1 | 3 | |||||
ogarniczenie dolne : n√ | = n√ | = n√ | *( | )n = | ||||
5n+5n | 2*5n | 2 | 5 |
1 | 3 | 3 | 3 | |||||
= n√ | * n√( | )n = 1 * | = | |||||
2 | 5 | 5 | 5 |
3n+3n | 2*3n | 3 | ||||
ograniczenie gorne: n√ | = n√ | = n√2*( | )n = | |||
5n | 5n | 5 |
3 | 3 | 3 | ||||
= n√2 * n√( | )n = 1 * | = | ||||
5 | 5 | 5 |
3n | 3n+2n | 3n + 3n | ||||
n√ | ≤ n√ | ≤ n√ | ||||
5n+5n | 5n+4n | 5n |
3 | ||
g= | ||
5 |