√x−8 | |
3√x−4 |
√1+2x−3 | |
√x−2 |
√x−8 | 1/2 x−1/2 | 3 | ||||
limx→64 | = limx→64 | = | 641/6 = 3 | |||
3√x−4 | 1/3 x−2/3 | 2 |
t3−8 | 3t2 | |||
limt→2 | = limt→2 | = 3 | ||
t2−2 | 2t |
√1+2x−3 | (√1+2x−3)' | |||
limx→4 | = limx→4 | = | ||
√x−2 | (√x−2)' |
1/√1+2x | 1/√1+2*4 | 8 | ||||
limx→4 | = | = | ||||
1/(2√x) | 1/(2√4) | 3 |
√64−8 | 0 | |||
1. Jak podstawimy 64 za iks to otrzymujemy: | = | |||
3√64−4 | 0 |
a3−b3 | ||
korzystamy ze wzoru a3−b3 = (a−b)(a2+ab+b2) czyli a−b= | ||
a2+ab+b2 |
√x+8 | ||
oraz mnozymy razy "sprzezenie" mianownika, czyli razy | ||
√x+8 |
√x−8 | 3√x2+43√x+16 | √x+8 | |||
* | * | = | |||
3√x−4 | 3√x2+43√x+16 | √x+8 |
(x−64)(3√x2+43√x+16) | (3√x2+43√x+16) | |||
= | = | |||
(x−64)(√x+8) | (√x+8) |
(3√x2+43√x+16) | 3√642+43√64+16 | 16+16+16 | ||||
lim | = | = | = | |||
(√x+8) | √64+8 | 8+8 |
48 | ||
= | =3 | |
16 |