3 | ||
| log2/3 (2 − | ) | > 1 | |
x+2 |
3 | ||
Zalozenie 2− | >0 | |
x+2 |
3 | ||
2 − | > 0 | |
x+2 |
2x + 4 − 3 | |
> 0 | |
x+2 |
2x + 1 | ||
1) a > k <=> log2/3 ( | ) > 0 | |
x + 2 |
2x + 1 | ||
log2/3 ( | ) > log2/3 1 | |
x + 2 |
2x + 1 | |
> 1 | |
x + 2 |
2x + 1 | ||
log2/3 ( | ) > log2/3 2/3 | |
x + 2 |
2x + 1 | |
> 2/3 | * 3 | |
x + 2 |
6x + 3 | |
> 2 | |
x + 2 |
6x + 3 − 2x − 4 | |
> 0 | |
x + 2 |
2x + 1 | ||
2) a < k <=> log2/3 ( | ) < 0 | |
x + 2 |
2x + 1 | ||
log2/3 ( | ) < log2/3 1 | |
x + 2 |
2x + 1 | |
< 1 | |
x + 2 |
2x + 1 | ||
−log2/3 ( | ) > log2/3 2/3 | |
x + 2 |
−2x − 1 | |
> 2/3 | * 3 | |
x + 2 |
−6x − 3 | |
> 2 | |
x + 2 |
−6x − 3 − 2x − 4 | |
> 0 | |
x + 2 |
3 | ||
2− | >0 i x≠−2 | |
x+2 |
2*(x+2)−3 | |
>0 | |
x+2 |
2x+1 | |
>0⇔(2x+1)*(x+2)>0 i x≠−2 | |
x+2 |
1 | ||
x<−2 lub x>− | ||
2 |
3 | 3 | |||
log2/3(2− | )<−1 lub log2/3(2− | )>1 | ||
x+2 | x+2 |
3 | 2 | |||
log2/3(2− | )<log2/3( | )−1 | ||
x+2 | 3 |
3 | 2 | |||
lub log2/3(2− | )>log{2/3)( | )1⇔ funkcje malejące, odwracamy nierówności | ||
x+2 | 3 |
3 | 3 | 3 | 2 | |||||
(2− | )> | lub (2− | )< | ⇔ | ||||
x+2 | 2 | x+2 | 3 |
x−4 | 4x−1 | ||
>0 lub | <0 | ||
x+2 | x+2 |
1 | ||
[x<−2 lub x >4] lub [x∊(−2, | ] i x∊D | |
4 |
1 | 1 | |||
x∊(−∞,−2) ∪(− | , | )∪(4,∞) | ||
2 | 4 |