| 1 | 1 | 1 | ||||
an= | + | ..... | ||||
| n+1 | n+2 | n+n |
| 1 | 1 | 1 | 1 | 1 | ||||||
= | + | +...+ | + | + | = | |||||
| (n+1) +1 | (n+1) +2 | (n+1) +(n−1) | (n+1) +n | (n+1) + n+1 |
| 1 | 1 | 1 | ||||
= (an − | ) + | + | ||||
| n+1 | (n+1) +n | (n+1) + n+1 |
| 1 | ||
wyszło mi takie coś | >0 więc ciąg jest rosnący a co z ograniczonością? | |
| (2n+1)(2n+2) |
| 1 | 1 | 1 | |||
> | > ... > | ||||
| n+1 | n+2 | n+n |
| 1 | 1 | |||
an < n*( | ) < n* | = 1 | ||
| n+1 | n |