3x−4 | x+1 | |||
lim ( x −> nieskończoność ) | do potęgi | |||
3x+2 | 3 |
3x−4 | 3x+2−6 | 3x+2 | −6 | −6 | |||||
= | = | + | = 1 + | ||||||
3x+2 | 3x+2 | 3x+2 | 3x+2 | 3x+2 |
x | ||
lim (1+ | )an = ex | |
an |
x+1 | ||
zatem sprowadzamy, żeby była potęga (3x+2) i potem trzeba dopełnić do | , żeby było ok. | |
3 |
−6 | −6 | |||
(1 + | )(x+1)/3 = (1 + | )3x+2](x+1)/(3*(3x+2)) | ||
3x+2 | 3x+2 |
x+1 | 1 | |||
lim (x+1)/(3*(3x+2)) = lim | = | |||
9x+6 | 9 |
−6 | ||
lim (1 + | )3x+2](x+1)/(3*(3x+2)) = (e−6)1/9 = e−6/9 = e−2/3 | |
3x+2 |
x+1 | ||
Dlaczego | = 1/9 | |
9x+6 |
x+1 |
| 1 | 1 | ||||||||||||||
lim | = lim | = | , bo przy x→∞ to | → 0 | |||||||||||||
9x+6 |
| 9 | x |
x | a | |||
Lim( 1+ | ) do potęgi | =E | ||
a | x |
1 | a | ||||||||
= | |||||||||
| x |