Dany jest ciąg an=(n + 1) / n . Wyznacz wzór ogólny ciągu bn=an+2−an. neN+
| n +1 | ||
an = | ? | |
| n |
| n+1 | ||
an = | ||
| n |
| n+3 | ||
an+2 = | ||
| n+2 |
| n+3 | n+1 | −2 | ||||
bn = an+2 − an = | − | = | ||||
| n+2 | n | n(n+2) |
| ( n +2) + 1 | n +3 | |||
an+2 = | = | |||
| n +2 | n +2 |
| n + 3 | n +1 | n*(n +3) − ( n+1)*(n +2) | ||||
bn = | − | = | = | |||
| n +2 | n | n*(n +2) |
| n2 + 3n − ( n2 +2 n + n + 2) | − 2 | |||
= | = | |||
| n*( n +2) | n*(n +2) |