logarytmy
yazz: Mamy Ciag arytmetyczny an o reszcie log(1/2) k
Dla jakiego k ciag bn bedzie malejacym geometrycznym ciagiem, jesli bn = 2(an)
17 paź 13:46
yazz: bn = 2 do potegi an
17 paź 13:52
3Silnia&6: | bn+1 | |
ciag bn − geometryczny, malejący jeżeli |
| < 1 |
| bn | |
bn+1 | | 2an+1 | | 2an+log1/2k | |
| < 1 ⇔ |
| < 1 ⇔ |
| < 1⇔ |
bn | | 2an | | 2an | |
⇔ 2
log1/2k < 1 ⇔ k = ...
17 paź 13:58
'Leszek: Ciag arytmetyczny ma roznice ( zadnej reszty nie ma !)
r= log
1/2 k
Ciag geometryczny b
n = 2
an
iloraz ciagu geometrycznego
| bn+1 | | 2an+1 | |
q = |
| = |
| = 2r |
| bn | | 2an | |
Ciag geometryczny jest malejacy gdy q< 1 ⇔ 2{log
1/2 k < 2
0 ⇔
log
1/2 k < 0 ⇒k>1
17 paź 14:00
'Leszek: Blad w druku , powinno byc :2log1/2 k < 20
17 paź 14:04
yazz: W odpowiedziach jest, ze k nalezy do (0;1)
17 paź 20:17