tg x | ||
a) limx→π/2 | ||
tg 5x |
cos 3x − cos 7x | ||
b) limx→0 | ||
x2 |
1 | ||
c) limx→∞ (1 + | 2x − 1) | |
x + 2 |
tg x |
| 1 | ||||||||||
limx→π/2 | = limx→π/2 | * | = | |||||||||
tg 5x |
| 5 |
| 1 | |||||||||
limu→0 | * | |||||||||
| 5 |
tgx | cos5x | sinx | ||||
a) | = | * | ||||
tg5x | cosx | sin5x |
sinx | π/2−x | sin(5π/2−5x) | ||||
całość = | * | * | *5 | |||
sin5x | sin(π/2−x) | 5π/2−5x |
sinx | ||
a ponieważ | → 1 przy x→∞ oraz sin(π/2)=1, sin(5π/2)=1 to mamy | |
x |
sinx | π/2−x | sin(5π/2−5x) | ||||
limx→π/2 | * | * | *5 = 5 | |||
sin5x | sin(π/2−x) | 5π/2−5x |
3x−7x | 3x+7x | |||
b) cos3x−cos7x=−2sin | sin | =2sin2xsin5x | ||
2 | 2 |
sin2x | sin5x | |||
limx→0 2*5*2* | * | = 20 | ||
2x | 5x |
1 | ||
c) limx→∞ (1 + | )2x − 1 | |
x+2 |
1 | 1 | |||
(1+ | )2x−1=[(1+ | )x+2](2x−1)/(x+2)→e2 | ||
x+2 | x+2 |