xn+1 | xn*q | |||
an+1 − an = logxn+1 − logxn = log | = log | = logq (= const) | ||
xn | xn |
an+1 + an−1 | logxn+1 + logxn−1 | log(xn−1q2) + logxn−1 | |||
= | = | = | |||
2 | 2 | 2 |
log(xn−1q2 * xn−1) | log(xn−12q2) | 2log(xn−1q) | ||||
= | = | = | = | |||
2 | 2 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |