| x2−4x−5 | ||
Hej. Mam pytanie. Mam do obliczenia całkę ∫ | czy można ją obliczyć nie | |
| 2x2−3x+10 |
np rozbijasz ułamek na sumę
| x2 | −4x−5 | |||
∫ | +∫ | |||
| 2x2−3x+10 | 2x2−3x+10 |
| x2dx | |
| x2+k |
| f`(x) | ||
∫ | =ln|f(x) | |
| f(x) |
| x2 − 4*x − 5 | 1 | 2*x2 − 8*x − 10 | ||||
J = ∫ | dx = | ∫ | dx | |||
| 2*x2 − 3*x + 10 | 2 | 2*x2 − 3*x + 10 |
| 1 | 2*x2 − 3*x + 10 − 5*x − 20 | |||
J = | ∫ | dx | ||
| 2 | 2*x2 − 3*x + 10 |
| 1 | 5*x + 20 | |||
J = | ∫(1 − | )dx | ||
| 2 | 2*x2 − 3*x + 10 |
| 1 | 5 | x + 4 | ||||
J = | ∫dx − | ∫ | dx | |||
| 2 | 2 | 2*x2 − 3*x + 10 |
| x | 5 | 1 | 4*x + 16 | |||||
J = | − | * | ∫ | dx | ||||
| 2 | 2 | 4 | 2*x2 − 3*x + 10 |
| x | 5 | 4*x − 3 + 19 | ||||
J = | − | ∫ | dx | |||
| 2 | 8 | 2*x2 − 3*x + 10 |
| x | 5 | 4*x − 3 | 5 | 19 | ||||||
J = | − | ∫ | dx − | ∫ | dx | |||||
| 2 | 8 | 2*x2 − 3*x + 10 | 8 | 2*x2 − 3*x + 10 |
| x | 95 | dx | ||||
J = | − ln(2*x2 − 3*x + 10) − | ∫ | ||||
| 2 | 8 | 2*x2 − 3*x + 10 |
| x | 95 | |||
J = | − ln(2*x2 − 3*x + 10) − | J1 gdzie | ||
| 2 | 8 |
| dx | ||
J1 = ∫ | ||
| 2*x2 − 3*x + 10 |
| 3 | ||
2*x2 − 3*x + 10 = 2*(x2 − | *x + 5) = 2*[(x − 3/4)2 − 9/16 + 5] | |
| 2 |
| dx | ||
J1 = ∫ | ||
| 2*[(x − 3/4)2 + 71/16] |
| 4*x − 3 | ||
Podstawienie: x − 3/4 = √71/4*t dx = √71/4*dt t = | ||
| √71 |
| 1 | √71/4 | |||
J1 = | ∫ | dt | ||
| 2 | 71/16*t2 + 71/16 |
| 1 | 16 | √71 | dt | 2√71 | ||||||
J1 = | * | * | ∫ | = | *arctg(t) | |||||
| 2 | 71 | 4 | t2 + 1 | 71 |
| 2√71 | 4*x − 3 | |||
J1 = | *arctg( | ) | ||
| 71 | √71 |
| x | 95 | 2√71 | 4*x − 3 | |||||
J = | − ln(2*x2 − 3*x + 10) − | * | *arctg( | ) | ||||
| 2 | 8 | 71 | √71 |
| x | 95√71 | 4*x − 3 | ||||
J = | − ln(2*x2 − 3*x + 10) − | *arctg( | ) + C | |||
| 2 | 284 | √71 |
| 5 | ||
super, dzięki! Tylko dlaczego przed ln nie przepisujemy | ||
| 8 |
| x | 95 | dx | ||||
J= | −ln(2*x2−3x+10)− | ∫ | ||||
| 2 | 8 | 2*x2−3x+10 |
| 5 | ||
wszystko rozumiem tylko nie wiem dlaczego tam nie przepisujemy | ||
| 8 |
| 5 | ||
proszę podopisywać przed ln ułamek | ||
| 8 |
musze jeszcez obliczyc calkę oznaczona w przedziale <−4,−1> nie wiem czy
dobrze to zrobiłam?
−32−58ln54+58ln15−95√71284arctg(−19√7171)−u{95
√71}{284}arctg(−7√7171) dobrze? musze jeszcze wyliczyć ln i arctg?
| 4*x − 3 | 4*(−1) − 3 | −7 | ||||
= | = | |||||
| √71 | √71 | √71 |
| 4*x − 3 | 4*(−4) − 3 | −19 | ||||
= | = | |||||
| √71 | √71 | √71 |
| −1 | 5 | 95*√71 | −7 | |||||
Jg = | − | *ln(15) − | *arctg | |||||
| 2 | 8 | 284 | √71 |
| −1 | 5 | 95*√71 | 7 | |||||
Jg = | − | *ln(15) + | *arctg | |||||
| 2 | 8 | 284 | √71 |
| −4 | 5 | 95*√71 | −19 | |||||
Jd = | − | *ln(54) − | *arctg | |||||
| 2 | 8 | 284 | √71 |
| 5 | 95*√71 | 19 | ||||
Jd = −2 − | *ln(54) + | *arctg | ||||
| 8 | 284 | √71 |
| 1 | 5 | 95*√71` | 7 | |||||
Jo = (− | − | *ln(15) + | *arctg | ) − | ||||
| 2 | 8 | 284 | √71 |
| 5 | 95*√71` | 19 | ||||
(− 2 − | *ln(54) + | *arctg | ) | |||
| 8 | 284 | √71 |
| 1 | 5 | |||
Jo = (− | + 2) + | (ln(54) − ln(15)) + | ||
| 2 | 8 |
| 95*√71` | 19 | 7 | |||
*(arctg | − arctg | ) | |||
| 284 | √71 | √71 |
| 3 | 5 | 54 | 95*√71` | 19 | 7 | |||||||
Jo = | + | *ln | + | *(arctg | − arctg | ) | ||||||
| 2 | 8 | 15 | 284 | √71 | √71 |
| x − y | ||
arctgx − arctgy = arctg | ||
| 1 +x*y |
| 19 | 7 | 19/√71 − 7/√71 | ||||
arctg | − arctg | = arctg | ||||
| √71 | √71 | 1 + 19/√71*7/√71 |
| 12 | 71 | |||||||||||||
= arctg | = arctg | * | = | ||||||||||||
| √71 | 71 + 19*7 |
| 12 | 71 | √71 | ||||
arctg | * | = arctg | ||||
| √71 | 204 | 17 |
| 3 | 5 | 18 | √71 | |||||
Jo = | + | *ln | + arctg | ≈ 28.666 | ||||
| 2 | 8 | 5 | 17 |