2 | ||
Oblicz sinx jeśli sin2x = − | 2x∊ (270,360) | |
3 |
√2 | ||
x∊(135, 180) czyli II ćwiartka → 0 < sinx < | ||
2 |
2 | ||
2sinx*cosx = − | |:2 | |
3 |
1 | ||
sinx*cosx = − | |()2 | |
3 |
1 | ||
sin2x*cos2x = | ||
9 |
1 | ||
sin2x*(1−sin2x) = | ||
9 |
√2 | √2 | |||
ponieważ 0 < sinx < | , to 02 < sin2x < ( | )2 | ||
2 | 2 |
2 | 1 | 1 | ||||
0 < sin2x < | = | , stąd t ∊ (0, | ) | |||
4 | 2 | 2 |
1 | ||
t*(1−t) = | ||
9 |
−9−3√5 | 3+√5 | 1 | ||||
t1 = | = | ∉ (0, | ) | |||
−18 | 6 | 2 |
3−√5 | 1 | |||
t2 = | ∊ (0, | ) | ||
6 | 2 |
3−√5 | ||
sin2x = | ||
6 |
3−√5 | ||
sinx = pierwiastek z | ||
6 |
√5 | ||
sin(2x)=−2/3 to cos(2x)=+√1−sin2(2x)=+ | ||
3 |
√5 | 3−√5 | |||
cos(2x)=1−2sin2x ⇒ 2sin2x=1− | ⇒ sin2x= | |||
3 | 6 |
3−√5 | ||
sinx=+√ | ||
6 |