| 1 | ||
cosα= | ||
| √1+tg2α |
| 1 | ||
tgα= | (do potegi drugiej obie strony | |
| √1+tg2α |
| 1 | ||
tg2α= | ||
| 1+tg2α |
| −1−√5 | ||
k1= | <0 odpada | |
| 2 |
| √5−1 | ||
k2= | ||
| 2 |
| √5−1 | ||
tg2α= | ||
| 2 |
| √5−1 | ||
tgα= √ | ||
| 2 |
| √5−1 | ||
α= arctg √ | +kπ | |
| 2 |
| √5−1 | ||
tgα= −√ | ||
| 2 |
| √5−1 | √5−1 | |||
α= arctg(−√ | )=−arctg( | }+kπ | ||
| 2 | 2 |
| π | ||
tgx=cosx zał x≠ | +πk | |
| 2 |
| sinx | |
=cosx | |
| cosx |
| 1−√5 | 1+√5 | |||
t1= | t2= | nie spełnia warunków zadania | ||
| 2 | 2 |
| 1−√5 | ||
sinx= | ||
| 2 |
Tak lepiej jest
Wtedy mamy rozwiazanie
| 1−√5 | ||
x= (−1)n arcsin( | )+nπ | |
| 2 |