| t2−10 | ||
x= | ||
| 2t+12 |
| 2t2+12t−t2+10 | ||
t−x= | ||
| 2t+12 |
| t2+12t+10 | ||
√x2+12x+10= | ||
| 2t+12 |
| 2t(2t+12)−2(t2−10) | ||
dx= | dt | |
| (2t+12)2 |
| 2(t2+12t+10) | ||
dx= | dt | |
| (2t+12)2 |
| 2(t2+12t+10) | t2+12t+10 | ||
∫ | dt | ||
| 4(t+6)2 | 2(t+6) |
| 1 | (t2+12t+10)2 | ||
∫ | dt | ||
| 4 | (t+6)3 |
| 1 | (t2+12t+36−26)2 | ||
∫ | dt | ||
| 4 | (t+6)3 |
| 1 | ((t+6)2−26)2 | ||
∫ | dt | ||
| 4 | (t+6)3 |
| 1 | (t+6)4−52(t+6)2+676 | ||
∫ | dt | ||
| 4 | (t+6)3 |
| 1 | 676 | dt | |||
(∫(t+6)dt+∫ | dt−52∫ | ||||
| 4 | (t+6)3 | t+6 |
| 1 | 1 | 676 | |||
( | (t+6)2− | −52ln|t+6|)+C | |||
| 4 | 2 | 2(t+6)2 |
| 1 | (t+6)4−676 | ||
( | −52ln|t+6|)+C | ||
| 4 | 2(t+6)2 |
| 1 | (t+6)4−676 | ||
( | −26ln|t+6|)+C | ||
| 2 | 4(t+6)2 |
| 1 | t2+12t+62 | t2+12t+10 | ||
( | −26ln|t+6|)+C | |||
| 2 | 2(t+6) | 2(t+6) |
| t2−10 | ||
x= | ||
| 2t+12 |
| t2−10+12t+72 | ||
x+6= | ||
| 2t+12 |
| 1 | ||
= | ((x+6)√x2+12x+10−26ln|x+6+√x2+12x+10|)+C | |
| 2 |