b | a+b | |||
Dana jest funkcja f(x)=|log2(x−1)| taka że f(a)=f( | ), f(b)=2f( | ), dla 1<a<b. | ||
b−1 | 2 |
b | ||
|log2(a−1)| = |log2( | )| | |
b−1 |
b | b | |||
log2(a−1) = log2( | ) ∨ log2(a−1) = −log2( | ) | ||
b−1 | b−1 |
b | b−1 | |||
log2(a−1) = log2( | ) ∨ log2(a−1) = log2( | ) | ||
b−1 | b |
b | b−1 | |||
a−1 = | ∨ a−1 = | |||
b−1 | b |
2b−1 | 2b−1 | |||
a = | ∨ a = | |||
b−1 | b |
a+b | ||
|log2(b−1)| = 2*|log2( | − 1)| | |
2 |
a+b | a+b | |||
log2(b−1) = log2( | − 1)2 ∨ log2(b−1) = −log2( | − 1)2 | ||
2 | 2 |
a+b−2 | 2 | |||
b−1 = ( | )2 ∨ b−1 = ( | )2 | ||
2 | a+b−2 |
2b−1 | ||
1) niech a = | ||
b−1 |
2b−1 + b(b−1) −2(b−1) | ||
b−1 = ( | )2 ∨ | |
2b−2 |
2b−2 | ||
b−1 = ( | )2 | |
2b−1 + b(b−1) −2(b−1) |
b(b−1) | b | |||
b−1 = ( | )2 = ( | )2 ∨ | ||
2(b−1) | 2 |
2(b−1) | 2 | |||
b−1 = ( | )2 = ( | )2 | ||
b(b−1) | b |
b2 | 4 | |||
b−1 = | ∨ b−1 = | |||
4 | b2 |
2b−1 | 4−1 | |||
w takim razie a = | = | = 3 > b <−−− sprzeczne z założeniem (1<a<b) | ||
b−1 | 2−1 |
2b−1 | ||
2) niech a = | (rozwiązujesz analogicznie do tego co tutaj robiłem | |
b |
1 | b−1 | |||
a−1 = | ∨ a−1 = | |||
b−1 | 1 |
b | ||
a = | ∨ a = b <−−− sprzeczne z założeniem | |
b−1 |
b | ||
a więc: a = | ||
b−1 |
b | ||
b > | ⇔ b2 −2b > 0 ⇔ b(b−2) > 0 ⇒ b>2 | |
b−1 |
a+b − 2 | b + b(b−1) − 2(b−1) | b2 − 2b + 2 | ||||
b−1 = ( | )2 = ( | )2 = ( | )2 | |||
2 | 2(b−1) | 2(b−1) |
2 | 2(b−1) | |||
b−1 = ( | )2 = ( | )2 | ||
a+b−2 | b2−2b+2 |
5 | 4 | ||
> a > | (czyli zachodzi 1<a<b) | ||
4 | 3 |
2√3 | 2√3 | |||
W'(b) = 3b2 − 12b + 8 = 3(b − 2 + | )(b − 2 − | ) | ||
3 | 3 |
2√3 | 16√3−36 | |||
W(2 − | ) = | < 0 | ||
3 | 9 |