5n−2n+10n | ||
limn→∞ | ||
11n+5n |
24n−32n+1 | ||
limn→∞ | ||
10n−1+1 |
n!+(n+1)! | ||
limn→∞ | ||
n!+(n+2)! |
| ||||||||||||
limn→∞ | ||||||||||||
n2+3n−1 |
1 | ||
4) | ||
2 |
n! + n!(n+1) | n + 2 | |||
3) = limn→∞ | = limn→∞ | = ... | ||
n! + n!(n+1)(n+2) | 1 + (n+1)(n+2) |
n! + (n+1)! | n!(1 + (n+1) | |||
3) zauważ, że: | = | = | ||
n! + (n+2)! | n!(1 + (n+1)(n+2) |
n+2 | ||
= | ||
n2 + 3n + 3 |
| n*(n−1) | n2 − n | ||||||||||
4) zauważ, że: | = | = | ||||||||||
2 | 2 |