wartosc
zul: mamy 3sin x + 4cos x = 5, x∊(0,π/2)
oblicz 2sinx + cosx + 4tgx=?
28 sie 18:09
Adamm: cos(arcsin(3/5))sinx+sin(arcsin(3/5))cosx=1
sin(x+arcsin(3/5))=1
x+arcsin(3/5)=π/2+2kπ
skoro x∊(0;π/2) to
x=π/2−arcsin(3/5)
sinx=sin(π/2−arcsin(3/5))=cos(arccos(4/5))=4/5
cosx=cos(π/2−arcsin(3/5))=sin(arcsin(3/5))=3/5
tgx=4/3
2sinx+cosx+4tgx=8/5+3/5+16/3=113/15
28 sie 18:29
Adamm: poprawka
cos(arcsin(4/5))sinx+sin(arcsin(4/5))cosx=1
x=π/2−arcsin(4/5)
sinx=cos(arccos(3/5))=3/5
cosx=sin(arcsin(4/5))=4/5
tgx=3/4
2sinx+cosx+4tgx=5
28 sie 18:31
Mila:
| π | |
x∊(0, |
| )⇒sinx>0 i cosx>0 |
| 2 | |
3sinx+4cosx=5/:5
| 3 | | 4 | |
cosα= |
| to sinα= |
| , α− kąt ostry |
| 5 | | 5 | |
sinx*cosα+sinα*cosx=1
sin(x+α)=1
| π | | π | | π | |
2sinx+cosx+4tgx=2sin( |
| −α)+cos( |
| −α)+4tg( |
| −α)= |
| 2 | | 2 | | 2 | |
| 3 | | 4 | | 3 | | 4 | | 3 | |
=2sinα+cosα+4*ctgα=2* |
| + |
| +4* |
| : |
| =2+4* |
| =5 |
| 5 | | 5 | | 5 | | 5 | | 4 | |
28 sie 19:07