x | a2 | x | ||||
∫√a2 − x2dx = | √a2 − x2 + | arcsin | ||||
2 | 2 | |a| |
1−3t2 | 4 | |||
x= | =−3+ | |||
1+t2 | 1+t2 |
8t | ||
dx=− | dt | |
(1+t2)2 |
4t | ||
(x+3)t= | ||
1+t2 |
−32t2 | ||
∫ | dt | |
(1+t2)3 |
−32t2 | a3t3+a2t2+a1t+a0 | b1t+b0 | ||||
∫ | dt= | +∫ | dt | |||
(1+t2)3 | (1+t2)2 | 1+t2 |
−32t2 | |
= | |
(1+t2)3 |
(3a3t2+2a2t+a1)(1+t2)2−(a3t3+a2t2+a1t+a0)(1+t2)4t | |
(1+t2)4 |
b1t+b0 | ||
+ | ||
1+t2 |
−32t2 | |
= | |
(1+t2)3 |
(3a3t2+2a2t+a1)(1+t2)−(a3t3+a2t2+a1t+a0)4t | |
(1+t2)3 |
b1t+b0 | ||
+ | ||
1+t2 |
−32t2 | −4t3+4t | dt | ||||
∫ | dt= | −4∫ | ||||
(1+t2)3 | (1+t2)2 | 1+t2 |
−32t2 | −4t3+4t | |||
∫ | dt= | −4arctan(t)+C | ||
(1+t2)3 | (1+t2)2 |
−32t2 | 1−t2 | 4t | |||
∫ | dt= | −4arctan(t)+C | |||
(1+t2)3 | 1+t2 | 1+t2 |
1 | √3−2x−x2 | |||
∫√3−2x−x2dx= | (x+1)√3−2x−x2−4arctan( | )+C | ||
2 | x+3 |