dx | ||
∫−20 | ||
(x+1)3 |
dx | dx | dx | ||||
∫−20 | = ∫−2−1 | + ∫−10 | ||||
(x+1)3 | (x+1)3 | (x+1)3 |
dx | dx | |||
1) ∫−2−1 | =lim(T→−1) ∫−2T | = | ||
(x+1)3 | (x+1)3 |
−1 | ||
=lim(T→−1) ( | +12)= −∞ | |
2(T+1)2 |
dx | dx | |||
2) ∫−10 | =lim(T→−1) ∫T0 | = +∞ | ||
(x+1)3 | (x+1)3 |
dx | ||
Zatem ∫−10 | =−∞+∞ | |
(x+1)3 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |