yht:
Niech |AS| = x oraz |AD| = y
Wówczas, z tw. sinusów w ΔADC
2y = 2
√2x
y =
√2x
z tw. cosinusów w ΔADC
|DC|
2 = (
√2x)
2 + (2x)
2 − 2*
√2x*2x*cos(105
0)
...
|DC| = (1+
√3)x
cos(105
0) można policzyć rozpisując na cos(60
0+45
0) i dalej ze wzoru na cosinus sumy kątów
z tw. sinusów w ΔBCD
|BC| | | |DC| | |
| = |
| |
sin(450−α) | | sinα | |
√2x | | (1+√3)x | |
| = |
| |:x |
sin450*cosα−cos450*sinα | | sinα | |
√2 | | (1+√3) | |
| = |
| |
sin450*cosα−cos450*sinα | | sinα | |
2 | | (1+√3) | |
| = |
| |
cosα−sinα | | sinα | |
(1+
√3)(cosα−sinα) = 2sinα |:cosα
(1+
√3)(1−tgα) = 2tgα
1−tgα+
√3−
√3tgα = 2tgα
1+
√3 = (3+
√3)tgα |:(3+
√3)
| (3−√3) | | (1+√3)(3−√3) | |
tgα = U{1+√3{3+√3}* |
| = |
| |
| (3−√3) | | (3+√3)(3−√3) | |
| 3−√3+3√3−3 | | 2√3 | | √3 | |
tgα = |
| = |
| = |
| → α = 300 |
| 32−(√3)2 | | 6 | | 3 | |