Niech |AS| = x oraz |AD| = y
Wówczas, z tw. sinusów w ΔADC
| y | 2x | ||
= | |||
| sin300 | sin450 |
| |BC| | |DC| | ||
= | |||
| sin(450−α) | sinα |
| √2x | (1+√3)x | ||
= | |:x | ||
| sin450*cosα−cos450*sinα | sinα |
| √2 | (1+√3) | ||
= | |||
| sin450*cosα−cos450*sinα | sinα |
| √2 | (1+√3) | ||||||||
= | |||||||||
| sinα |
| 2 | (1+√3) | ||
= | |||
| cosα−sinα | sinα |
| (3−√3) | (1+√3)(3−√3) | |||
tgα = U{1+√3{3+√3}* | = | |||
| (3−√3) | (3+√3)(3−√3) |
| 3−√3+3√3−3 | 2√3 | √3 | ||||
tgα = | = | = | → α = 300 | |||
| 32−(√3)2 | 6 | 3 |