(x+25)*exx+25 | ||
lim | x−>oo, korzystam z czegoś co wolfram nazywa "product rule" lim | |
x |
(x+25)*exx+25 | ||
=e | ||
x |
x+25 | ||
t= | , wtedy dla x→∞ mamy t→1+ | |
x |
x+25 | ||
lim x→∞ ( | *ex/(x+25)) = lim t→1+ (t*e1/t) = e | |
x |
x+25 | ||
(x+25)ex/(x+25)−xe=x*( | ex/(x+25)−e) | |
x |
25 | ||
x= | ||
t−1 |
x+25 | 25te1/t−25e | |||
x*( | ex/(x+25)−e)= | |||
x | t−1 |
25te1/t−25e | ||
limt→1+ | = limt→1+ 25e1/t−25(1/t)e1/t = 0 | |
t−1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |