n2 | ||
∑n=1∞ ( | ) | |
2n |
t | t | −t2−t | ||||
=t(t*(∞∑n=1tn)')'=t(t*( | )')'=t*( | )'= | ||||
1−t | (1−t)2 | (t−1)3 |
x | 1 | |||
t= | , za x wstawiamy 1, więc za t podstawiamy | |||
2 | 2 |
| −3 | ||||||||||||||
= | *(−8)=6 | ||||||||||||||
| 4 |
n2 | 1 | 1 | ||||
S=∑n=1∞ | =∑n2*( | )n=∑n2xn, gdzie x= | ||||
2n | 2 | 2 |
1 | ||
∞∑n=0xn= | ||
1−x |
1 | 1 | |||
(∑xn)'=∑nxn−1=( | )'= | |||
1−x | (1−x)2 |
2 | ||
(∑nxn−1)'=∑n*(n−1)xn−2= | ⇔ | |
(1−x)3 |
2 | ||
∑n2*xn−2−∑nxn−2= | /*x2 | |
(1−x)3 |
2x2 | ||
∑n2*xn−∑nxn= | ||
(1−x)3 |
2x2 | ||
∑n2*xn=∑nxn+ | ||
(1−x)3 |
x | 2x2 | |||
∑n2*xn= | + | |||
(1−x)2 | (1−x)3 |
1/2 | 1/2 | |||
S= | + | =2+4=6 | ||
1/4 | 1/8 |