x2 | ||
∫x atan2x dx = (1/2) ∫(x2)' atan2x dx = (1/2) x2 atan2x − ∫ | atan x dx | |
1+x2 |
x2 | atan x | |||
∫ | atan x dx = ∫atan x dx − ∫ | dx | ||
1+x2 | 1+x2 |
atan x | ||
∫ | dx = (1/2) atan2x | |
1+x2 |
x | ||
∫atan x dx = ∫x' atan x dx = x atan x − ∫ | dx = z atan x = (1/2) ln(1 + x2) | |
1+x2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |