1 | 1 | |||
Pokaż że | =< xn <= | . | ||
2n−1 | 2n−2 |
1 | 1 | |||
zakładając że dla n zachodzi | ≤xn≤ | mamy | ||
2n−1 | 2n−2 |
1 | 1 | ||
≤xn+1+ln(xn+1+1)≤ | |||
2n−1 | 2n−2 |
x | ||
mamy x≥ln(1+x)≥ | ||
1+x |
1 | 1 | ||
≤xn+1+ln(xn+1+1)≤2xn+1 ⇒ | ≤xn+1 | ||
2n−1 | 2n |
1 | xn+12+2xn+1 | ||
≥xn+1+ln(xn+1+1)≥ | |||
2n−2 | 1+xn+1 |
1 | 1 | |||
0≥xn+12+(2− | )xn+1− | |||
2n−2 | 2n−2 |
1 | 1 | 1 | ||||
Δ=(2− | )2+ | =4+ | ||||
2n−2 | 2n | 4n−2 |
| 1 | ||||||||||||
xn+1≤ | ≤ | ||||||||||||
2 | 2n−1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |