1 | x+1 | |||
∑ | ( | )n | ||
n | x−1 |
1 | ||
obliczam lim n→∞ | *n = 1 | |
n+1 |
1 | ||
więc r = | = 1 | |
1 |
1 | ||
∑ | *(−1)n | |
n |
1 | 1 | |||
∑ | *( | )n | ||
n | 3 |
1 | 1 | 1 | 1 | 1 | 1 | |||||||
lim n→∞ n√an = | *n√ | = | * n− | = | e− | ln(n) | ||||||
3 | n | 3 | n | 3 | n |
1 | ln(n) |
| 1 | |||||||||||
więc lim n→∞ − | *ln(n)=− | →− | =− | → 0 | ||||||||||
n | n | 1 | n |
1 | ||
więc lim n√an → | < 1 więc szereg na tej granicy zbieżny | |
3 |
1 | x+1 | d | ||||
∑ | ( | )n) = T(x) / | ||||
n | x−1 | dx |
x+1 | 1 | 1−x | |||||||||||||
T'(x) = ∑ ( | )n−1 = | = | / ∫ od 0 do x | ||||||||||||
x−1 |
| 2 |
1−t | 1 | 1 | ||||
∫ | dt = | (x− | x2) | |||
2 | 2 | 2 |
1+x | 2 | |||
T'(x) = ∑( | )n−1 * − | |||
1−x | (1−x)2 |
(1−x)2 | 1+x | |||
więc − | T'(x) = ∑( | )n−1 | ||
2 | 1−x |
2 | 1 | 1 | ||||
T(x) = − | * | (x− | x2) | |||
(1−x)2 | 2 | 2 |
1+x | ||
u = | ||
1−x |
1+x | 1−x | |||
Suma z zadania = − ln [1+ | ] = ln | |||
1−x | 2 |
1+x | ||
Suma zbieżna o ile | ∊ (−1,1] | |
1−x |