1 | ||
an=an−1 + | ||
(n−1)(n+1) |
1 | 1 | 1 | 1 | ||||
= | ( | − | ) | ||||
(n−1)(n+1) | 2 | n−1 | n+1 |
1 | 1 | 1 | 1 | |||||
an=a1+∑(k=2 do n) | =1+ | ∑(k=2 do n)[ | − | ]= | ||||
(k−1)*(k+1) | 2 | k−1 | k+1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||||
=1+ | *[ | − | + | − | + | − | + | − | +... | |||||||||
2 | 1 | 3 | 2 | 4 | 3 | 5 | 4 | 6 |
1 | 1 | 1 | 1 | 1 | 1 | |||||||
+ | − | + | − | + | − | ]= | ||||||
n−3 | n−1 | n−2 | n | n−1 | n+1 |
1 | 1 | 1 | 1 | |||||
=1+ | *[1+ | − | − | ]= | ||||
2 | 2 | n | n+1 |
1 | 3 | n+1+n | ||||
=1+ | *[ | − | ]= | |||
2 | 2 | n*(n+1) |
7n2+3n−2 | ||
= | ||
4n*(n+1) |