1 | 1 | 1 | 1 | 1 | ||||||
pierwszym sposobem ; ... | ∫(1−s2)ds= | *s− | s3+C= | sint− | (sint)3= | |||||
3 | 3 | 3 | 3 | 9 |
1 | 1 | |||
= | sin3x− | (sin3x)3+C | ||
3 | 9 |
1 | ||
a drugim jeszcze coś innego ![]() | t3+c= | |
3 |
1 | ||
A odp w książce | sin3x(2+cos23x)+c | |
9 |
1 | 1 | ||
sin3x− | (sin3x)3 | ||
3 | 9 |
1 | 1 | |||
= | sin3x(1− | sin23x) | ||
3 | 3 |
1 | 1 | |||
= | sin3x(1− | (1−cos23x)) | ||
3 | 3 |
1 | 1 | 1 | ||||
= | sin3x(1− | + | cos23x) | |||
3 | 3 | 3 |
1 | 2 | 1 | ||||
= | sin3x( | + | cos23x) | |||
3 | 3 | 3 |
1 | ||
= | sin3x(2+cos23x) | |
9 |
1 | |
∫(1−t2)dt a nie 3∫(1−t2)dt | |
3 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |