dt | ||
=xdx | ||
2 |
1 | ||
= | ∫x√x2+92xdx | |
2 |
1 | ||
= | ∫(t−9)√tdt | |
2 |
1 | 9 | |||
= | ∫t(3/2) dt − | ∫√tdt | ||
2 | 2 |
x3 | x3 | 2x | |||
∫x2√x2+9dx= | √x2+9−∫ | dx | |||
3 | 3 | 2√x2+9 |
x4 | ||
problemem jest całka ∫ | dx | |
√x2+9 |
x4 | x4−81+81 | (x2+9)(x2−9) | ||||
∫ | dx=∫ | dx=∫ | dx | |||
√x2+9 | √x2+9 | √x2+9 |
81 | ||
+∫ | dx | |
√x2+9 |
81 | ||
=∫√x2+9(x2−9)dx+∫ | dx | |
√x2+9 |
81 | ||
=∫x2√x2+9dx−9∫√x2+9dx+∫ | dx | |
√x2+9 |
x3 | 1 | 81 | ||||
∫x2√x2+9dx= | √x2+9− | (∫x2√x2+9dx−9∫√x2+9dx+∫ | dx) | |||
3 | 3 | √x2+9 |
81 | ||
3∫x2√x2+9dx=x3√x2+9−(∫x2√x2+9dx−9∫√x2+9dx+∫ | dx) | |
√x2+9 |
81 | ||
3∫x2√x2+9dx+∫x2√x2+9dx=x3√x2+9+9∫√x2+9dx−∫ | dx | |
√x2+9 |
81 | ||
4∫x2√x2+9dx=x3√x2+9+9∫√x2+9dx−∫ | dx | |
√x2+9 |
1 | 81 | |||
∫x2√x2+9dx= | (x3√x2+9+9∫√x2+9dx−∫ | dx) | ||
4 | √x2+9 |
1 | ||
∫√x2+9dx=.... = | (√x2+9*x+9arcsin(x/3)) | |
2 |
1 | ||
∫ | dx=arcsin(x/3) | |
√x2+9 |
t2−9 | ||
x= | ||
2t |
2t2−t2+9 | t2+9 | |||
t−x= | = | |||
2t | 2t |
2t(2t)−2(t2−9) | ||
dx= | dt | |
4t2 |
t2+9 | ||
dx= | dt | |
2t2 |
(t2−9)2 | t2+9 | t2+9 | ||
=∫ | dt | |||
4t2 | 2t | 2t2 |
1 | (t4−81)2 | |||
= | ∫ | dt | ||
16 | t5 |
1 | t8−162t4+6561 | |||
= | ∫ | dt | ||
16 | t5 |