oblicz całke
xyz: Oblicz calkę nieoznaczoną (1−x)/(x2+1)2 dx
odp: 1/4*(x+1)/(x2+1)
21 maj 15:46
jc: To nie jest dobra odpowiedź.
21 maj 15:52
Mariusz:
| 1−x | | a1x+a0 | | b1x+b0 | |
∫ |
| dx= |
| +∫ |
| dx |
| (x2+1)2 | | x2+1 | | x2+1 | |
1−x | | a1(x2+1)−2x(a1x+a0) | | b1x+b0 | |
| = |
| + |
| |
(x2+1)2 | | (x2+1)2 | | x2+1 | |
1−x=a
1x
2+a
1−2a
1x
2−2a
0x+(b
1x+b
0)(x
2+1)
1−x=−a
1x
2−2a
0x+a
1+b
1x
3+b
1x+b
0x
2+b
0
−x+1=b
1x
3+(b
0−a
1)x
2+(b
1−2a
0)x+a
1+b
0
b
1=0
b
0=a
1
−2a
0=−1
a
1+b
0=1
b
1=0
2a
0=1
b
0=a
1
2a
1=1
| 1 | x+1 | | 1 | | dx | |
= |
|
| + |
| ∫ |
| |
| 2 | x2+1 | | 2 | | x2+1 | |
| 1 | x+1 | | 1 | |
= |
|
| + |
| arctan(x)+C |
| 2 | x2+1 | | 2 | |
22 maj 00:10