1 | ||
Oblicz sin4x+cos4x, jeśli sinx+cosx= | ||
√2 |
1 | ||
sinx+cosx= | ||
√2 |
1 | ||
(sinx+cosx)2= | ||
2 |
1 | ||
2sinxcosx=− | ||
2 |
1 | ||
sin2x*cos2x= | ||
16 |
√2 | ||
sinx+cosx= | /2 | |
2 |
√2 | 2 | |||
2sinxcosx = | − | |||
2 | 2 |
√2−2 | ||
2sinxcosx = | /:2 | |
2 |
√2−2 | ||
sinxcosx= | /2 | |
4 |
2−4√2+4 | ||
sin2xcos2x= | ||
16 |
3−2√2 | ||
sin2xcos2x= | /*2 | |
8 |
3−2√2 | ||
2sin2xcos2x= | ||
4 |
3−2√2 | 1+2√2 | |||
1− | = | |||
4 | 4 |
√2 | 1 | 1 | 1 | 7 | ||||||
[( | )2+ | ]2− | =1− | = | ||||||
2 | 2 | 8 | 8 | 8 |
1 | ||
no znaczy sin2x*cos2x= | wynika z tego poprzedniego więc sam | |
16 |
1 | ||
2sinxcosx=− | ||
2 |
1 | 2 | |||
2sinxcosx= | − | |||
2 | 2 |
−1 | ||
2sinxcosx= | ||
2 |
−1 | ||
sinxcosx= | /2 | |
4 |
1 | ||
sin2xcos2x= | /*2 | |
16 |
1 | ||
2sin2xcos2x= | ||
8 |